Skip to main content
Search IntMath
Close

IntMath forum | Complex Numbers

INTEGRATION [Solved!]

My question

Must the differential be included ALWAYS in the integrand?

If so, then why?

Relevant page

1. Integration: The General Power Formula

What I've done so far

Take, for instance, Example 1.

If dx was not written after the integrand, is that acceptable?

We know it is a derivative and that we are integrating because of the integral sign that is why we figured it is okay to not write it.

X

Must the differential be included ALWAYS in the integrand?

If so, then why?
Relevant page

<a href="/methods-integration/1-integration-power-formula.php">1. Integration: The General Power Formula</a>

What I've done so far

Take, for instance, Example 1.

If dx was not written after the integrand, is that acceptable?

We know it is a derivative and that we are integrating because of the integral sign that is why we figured it is okay to not write it.

Re: INTEGRATION

Yes, the differential must always be included!

Firstly, it tells us the variable we are integrating by. For example, what if I have more than one (potential) variable in the integration but with no differential, something like:

`int p^2q`

This could mean:

`int p^2qdp = p^3/3q+K` (where the `q` is a constant and `p` is the variable)

or

`int p^2qdq = p^2q^2/2 + K` (where `p` is now a constant, and `q` is the variable)

This would get very messy (and you'd get things wrong all the time) when you get up to double (and triple) integrals, like the ones you'll see in this page: Double Integrals

Secondly, the differential is an essential part of the concept of integration. The idea of finding an (exact) area under the curve is to break it up into rectangles, `f(x)` high and `Deltax` wide. When we let those rectangle widths get smaller and smaller (to infinitely thin) and we add them, we get the exact area. This is what's happening in Area Under a Curve page. The `dx` is the way we indicate we have been adding those rectangles which were `Deltax` wide.

X

Yes, the differential must always be included!

Firstly, it tells us the variable we are integrating by. For example, what if I have more than one (potential) variable in the integration but with no differential, something like:

`int p^2q`

This could mean:

`int p^2qdp = p^3/3q+K` (where the `q` is a constant and `p` is the variable)

or

`int p^2qdq = p^2q^2/2 + K` (where `p` is now a constant, and `q` is the variable)

This would get very messy (and you'd get things wrong all the time) when you get up to double (and triple) integrals, like the ones you'll see in this page: <a href="http://tutorial.math.lamar.edu/Classes/CalcIII/DIGeneralRegion.aspx">Double Integrals</a>

Secondly, the differential is an essential part of the concept of integration. The idea of finding an (exact) area under the curve is to break it up into rectangles, `f(x)` high and `Deltax` wide. When we let those rectangle widths get smaller and smaller (to infinitely thin) and we add them, we get the exact area. This is what's happening in <a href="https://staging.intmath.com/integration/3-area-under-curve.php">Area Under a Curve</a> page. The `dx` is the way we indicate we have been adding those rectangles which were `Deltax` wide.

Re: INTEGRATION

Thank you for an extremely concise response! Awesome!

X

Thank you for an extremely concise response! Awesome!

Re: INTEGRATION

Awesome!

X

Awesome!

Re: INTEGRATION

The steps are really simple and easy to remember. Thank! Sprunki

X

The steps are really simple and easy to remember. Thank! <a href="https://sprunki-game.io/">Sprunki</a>

Re: INTEGRATION

@Geometry Dash
Yes, the differential (such as dx) should always be included in an integral in proper mathematical notation. It is not just a formality—it tells you which variable you are integrating with respect to. Without the differential, an integral can become ambiguous, especially when multiple variables are involved or when using substitution.

While people sometimes omit dx in informal speech or simple examples, this is only shorthand. Formally, the integrand is f(x) dx, not just f(x). The integral symbol shows that integration is happening, but the differential specifies how it is performed.

X

@<a href="https://geometry-game.io/">Geometry Dash</a>
Yes, the differential (such as dx) should always be included in an integral in proper mathematical notation. It is not just a formality—it tells you which variable you are integrating with respect to. Without the differential, an integral can become ambiguous, especially when multiple variables are involved or when using substitution.

While people sometimes omit dx in informal speech or simple examples, this is only shorthand. Formally, the integrand is f(x) dx, not just f(x). The integral symbol shows that integration is happening, but the differential specifies how it is performed.

Re: INTEGRATION

It is not onlytext twist easy to read Build Now GGbu|| also make the conten Retro Bowl The systematiccapybara clicker sharing is1v1 lol unblocked grea moreplanet clicker rich andSlice Master interes ting.

X

It is not only<a href="https://text-twist.co">text twist</a> easy to read <a href="https://buildnow-gg.org">Build Now GG</a>bu|| also make the conten <a href="https://play-retro-bowl.com">Retro Bowl</a> The systematic<a href="https://capybara-clicker.co">capybara clicker</a> sharing is<a href="https://1v1-lol.cc/">1v1 lol unblocked</a> grea more<a href="https://planet-clicker.co">planet clicker</a> rich and<a href="https://play-slice-master.com">Slice Master</a> interes ting.

Re: INTEGRATION

Compete in fast-paced 1v1 basketball matches in Basketball Bros, where unique characters and their special moves bring a fun twist to traditional basketball gameplay.

X

Compete in fast-paced 1v1 basketball matches in <a href="https://basketballbros.org">Basketball Bros</a>, where unique characters and their special moves bring a fun twist to traditional basketball gameplay.

Re: INTEGRATION

It reminds me of the time I was trying to assemble some furniture from IKEA. The instructions were mostly diagrams, and I thought I could skip a few steps.

X

It reminds me of the time I was trying to assemble some furniture from IKEA. The instructions were mostly diagrams, and I thought I could skip a few steps.

Re: INTEGRATION

The integral sign shouts integration, right? It's a derivative party! Back in college, trying to solve a complex physics problem, I skipped writing differentials in a step, only to get completely messed up because I forgot what variable I was integrating with respect to. Like crashing hard playing Moto X3M. Share your differential disasters!

X

The integral sign shouts integration, right? It's a derivative party! Back in college, trying to solve a complex physics problem, I skipped writing differentials in a step, only to get completely messed up because I forgot what variable I was integrating with respect to. Like crashing hard playing <a href="https://motox3mfree.com/">Moto X3M</a>. Share your differential disasters!

Reply

You need to be logged in to reply.

Related Complex Numbers questions

  • Re: All numbers from the sum of complex numbers? [Solved!]
    @BuBu: You haven't indicated any working so that I can get a sense of where...
  • square root of a complex number [Solved!]
    I cant get a formula for the square root of a + bi to work.
  • Complex conjugates [Solved!]
    In section 2 the part on dividing complex numbers, it is written that the numerator...
  • square roots! [Solved!]
    Hello Murray, I wanted to ask you a strange question that I found it little weird.....
  • Index problem [Solved!]
    What is the difference between (-1)^2/2 and ((-1)^2)^1/2?

Complex Numbers lessons on IntMath

top

Tips, tricks, lessons, and tutoring to help reduce test anxiety and move to the top of the class.